Stable Blind Deconvolution over the Reals from Additional Autocorrelations
نویسندگان
چکیده
Recently the one-dimensional time-discrete blind deconvolution problem was shown to be solvable uniquely, up to a global phase, by a semi-definite program for almost any signal, provided its autocorrelation is known. We will show in this work that under a sufficient zero separation of the corresponding signal in the z−domain, a stable reconstruction against additive noise is possible. Moreover, the stability constant depends on the signal dimension and on the signals magnitude of the first and last coefficients. We give an analytical expression for this constant by using spectral bounds of Vandermonde matrices.
منابع مشابه
Blind Deconvolution with Additional Autocorrelations via Convex Programs
In this work we characterize all ambiguities of the linear (aperiodic) one-dimensional convolution on two fixed finite-dimensional complex vector spaces. It will be shown that the convolution ambiguities can be mapped one-toone to factorization ambiguities in the z−domain, which are generated by swapping the zeros of the input signals. We use this polynomial description to show a deterministic ...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملSingle Image Blind Deconvolution with Higher-Order Texture Statistics
We present a novel method for solving blind deconvolution, i.e., the task of recovering a sharp image given a blurry one. We focus on blurry images obtained from a coded aperture camera, where both the camera and the scene are static, and allow blur to vary across the image domain. As most methods for blind deconvolution, we solve the problem in two steps: First, we estimate the coded blur scal...
متن کاملRegularization Methods for Blind Deconvolution and Blind Source Separation Problems
This paper is devoted to blind deconvolution and blind separation problems. Blind deconvolution is the identiication of a point spread function and an input signal from an observation of their convolution. Blind source separation is the recovery of a vector of input signals from a vector of observed signals, which are mixed by a linear (unknown) operator. We show that both problems are paradigm...
متن کاملBlind Signal Deconvolution by Spatio Temporal Decorrelation and Demixing
In this paper we present a simple efficient local unsupervised learning algorithm for on-line adaptive multichannel blind deconvolution and separation of i.i.d. sources. Under mild conditions, there exits a stable inverse system so that the source signals can be exactly recovered from their convolutive mixtures. Based on the existence of the inverse filter, we construct a two-stage neural netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.07879 شماره
صفحات -
تاریخ انتشار 2017